Install and Configure Git on Ubuntu 18.04

What is the purpose of Git?

Git gives you a way to not only track changes in source code, but it can also be used to track changes in files.  It then stores the data in what is called a repository, also known as a repo. In short, Git is a tool used as a version control system (VCS), allowing you to distribute changes from your local machine to the repo and vice versa.  In this tutorial, we’ll be instructing on how to install and configure git onto an Ubuntu 18.04 server.

 

Install Git on Ubuntu 18.04

Step 1: Update our System

This step ensures that general updates are performed on the server.

apt-get update

 

Step 2: Install Git

Install Git with the command below and proceed through the installation with y, when prompted.

apt-get install git-core

 

Step 3: Confirm Git Installation

We will be able to tell if the installation was successful by running the following command:

git --version

 

Configuring Git per User in Ubuntu 18.04

After installing Git, configurations are needed to commit messages to be sent out.  Without setting the name and email address, you’ll see warnings when making commitments to git. If you have multiple users who utilize git, create an entry for each user. You can easily set these details for a user with two commands:

git config --global user.name "Your_Name"

git config --global user.email "email_address@domain.com"

Note:
If you already have a github.com account you can use the associated username and email.

If you need to access the information set, you can find it in the .gitconfig file.

Thanks for reading our introductory article on How to Install Git.  Continue your education by reading our other Git related articles, Creating a Repo in Github and Committing/Pushing to Git.

Install Java 8 on CentOS 7

In this tutorial, we’ll be showing you how to install Oracle’s Java 8 programming language specifically onto a CentOS 7 server. This simple object-oriented language is used for many of the applications and websites you come across today.  Let’s jump right in!

Pre-flight

  1. Open the terminal and login as root.  If you are logged in as another user, you will need to add sudo before each command.
  2. Working on a Linux CentOS 7 server
  3. No installations of previous Java versions

Installing Java 8 on CentOS 7

Step 1: Update

As a matter of best practice we’ll update before installing any new programs:

yum -y update

Step 2: Install Java 8

yum install java-1.8.0-openjdk

Step 3:  Verify Java is Installed

java -version

Example Output:

java -version
openjdk version "1.8.0_191"
OpenJDK Runtime Environment (build 1.8.0_191-b12)
OpenJDK 64-Bit Server VM (build 25.191-b12, mixed mode)

Set Java’s Home Environment

Step 1: Find Java’s Path

Let’s set the JAVA_HOME variable, using the following command will give us a path so we can set the variable.

update-alternatives --config java

You’ll see a prompt to “Enter to keep the current selection[+], or type selection number:”, if you had multiple Java version you could set the default here, but all we need is the path of Java so we can exit pressing enter.  The highlighted area is the path we will need to copy/paste into our .bash_profile file.

Selection    Command
-----------------------------------------------
*+ 1           java-1.8.0-openjdk.x86_64 (/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.191.b12-1.el7_6.x86_64/jre/bin/java)</code?

Step 2: Setting Java’s Path in Your Environment

After copying your Java’s path, open the .bash_profile with your text editor.

vim .bash_profile

Export your Java path into the .bash_profile by adding the following to the bottom of the file. (Your path may look different from mine, and it’s not important that they vary.)

export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.191.b12-1.el7_6.x86_64/jre/bin/java

Refresh the File:

Source .bash_profile

When you use the JAVA_HOME variable you’ll now be able to see the path you set.

echo $JAVA_HOME

Example Output:

/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.191.b12-1.el7_6.x86_64/jre/bin/java

 

Install Drush on Ubuntu 16.04

Installing Drush provides a way of managing your Drupal installs using a familiar method, the command line.  Drush can simplify your life by allowing you to perform admin duties.

In this tutorial, we will be using Composer as our package manager, as it is necessary to install Drush’s dependencies.  It does take at least 1 GB worth of memory, so be sure to have that before starting this tutorial.

Step 1:  Updating

As a matter of good practices, we’ll update our system

apt-get update

Step 2:  Install Zip

Most likely you’ll already have the zip command but if you don’t go ahead and install.

apt-get install zip unzip

Step 3: Install Curl

apt-get install curl php7-cli git

Step 4: Install Composer

curl -sS https://getcomposer.org/installer | sudo php -- --install-dir=/usr/local/bin --filename=composer

Step 5: Install Drush

Using the following command will install the newest version of Drush, at this time it is

composer global require drush/drush

Alternatively, you can install the Drush version of your choice by appending the version needed.  If you’d like Drush 8 use…

composer global require drush/drush:8

Step 6: Add Drush Directory to Your Path

If performing the version check in Step 6 gives you the message of “command not found” then open your .bashrc file and input the following into the file

#path for Drush
export PATH="$HOME/.composer/vendor/bin:$PATH"

Run source show recognize the changes to the file.

source .bashrc

Step 7: Verify the Installation of Drush

You’ll be able to verify the version of the Drush install and other useful information by running the following command.

drush status

Output:

PHP binary    : /usr/bin/php7.0
PHP config    : /etc/php/7.0/cli/php.ini
PHP OS        : Linux
Drush script  : /root/.composer/vendor/bin/drush
Drush version : 9.5.2
Drush temp    : /tmp
Drush configs : /root/.composer/vendor/drush/drush/drush.yml
Drupal root   : /root/.composer/vendor/drush/drush/sut

 

Install TeamViewer on Ubuntu 16.04 LTS

VNC (Virtual Network Computing) is a method for sharing a remote desktop environment. Allowing you to remote control another computer or server over the Internet or local network as if you were sitting in front of it. Keyboard and mouse strokes from your computer are relayed to the remote computer/server. There are many different kinds of VNC softwares available today. Several are cross-platform and add additional features, such as chat or file transfers. VNC is often used for remote technical support and remotely accessing files.

Continue reading “Install TeamViewer on Ubuntu 16.04 LTS”

How to Use Ansible

Ansible symbolAnsible is an easy to use automation software that can update a server, configure tasks, manage daily server functions and deploys jobs as needed on a schedule of your choosing. It is usually administered from a single location or control server and uses SSH to connect to the remote servers. Because it employs SSH to connect, it is very secure and, there is no software to install on the servers being managed. It can be run from your desktop, laptop or other platforms to assist with automating the tedious tasks which every server owner faces.

Continue reading “How to Use Ansible”

How To Install Docker on Ubuntu 16.04

Adding Docker to an Ubuntu server.

Docker is an open-source software tool designed to automate and ease the process of creating, packaging, and deploying applications using an environment called a container. The use of Linux containers to deploy applications is called containerization. A Container allows us to package an application with all of the parts needed to run an application (code, system tools, logs, libraries, configuration settings and other dependencies) and sends it out as a single standalone package deployable via Ubuntu (in this case 16.04 LTS). Docker can be installed on other platforms as well. Currently, the Docker software is maintained by the Docker community and Docker Inc. Check out the official documentation to find more specifics on Docker. Docker Terms and Concepts

Docker is made up of several components:

  • Docker for Linux: Software which runs Docker containers on the Ubuntu Linux OS.
  • Docker Engine: Used for building Docker images and creating Docker containers.
  • Docker Registry: Used to store various Docker images.
  • Docker Compose: Used to define applications using multiple Docker containers.

 

Some of the other essential terms and concepts you will come into contact with are:

  • Containerization: Containerization is a lightweight alternative to full machine virtualization (like VMWare) that involves encapsulating an application within a container with its own operating environment.

Docker also uses images and containers. The two ideas are closely related, but very distinct.

  • Docker Image: A Docker Image is the basic unit for deploying a Docker container. A Docker image is essentially a static snapshot of a container, incorporating all of the objects needed to run a container.  
  • Docker Container: A Docker Container encapsulates a Docker image and when live and running, is considered a container. Each container runs isolated in the host machine.
  • Docker Registry: The Docker Registry is a stateless, highly scalable server-side application that stores and distributes Docker images. This registry holds Docker images, along with their versions and, it can provide both public and private storage location. There is a public Docker registry called Docker Hub which provides a free-to-use, hosted Registry, plus additional features like organization accounts, automated builds, and more. Users interact with a registry by using Docker push or pull commands. Example:

docker pull registry-1.docker.io/distribution/registry:2.1.

  • Docker Engine: The Docker Engine is a layer which exists between containers and the Linux kernel and runs the containers. It is also known as the Docker daemon. Any Docker container can run on any server that has the Docker-daemon enabled, regardless of the underlying operating system.
  • Docker Compose: Docker Compose is a tool that defines, manages and controls multi-container Docker applications. With Compose, a single configuration file is used to set up all of your application’s services. Then, using a single command, you can create and start all the services from that file.
  • Dockerfiles: Dockerfiles are merely text documents (.yaml files) that contains all of the configuration information and commands needed to assemble a container image. With a Dockerfile, the Docker daemon can automatically build the container image.

    Example: The following basic Dockerfile sets up an SSHd service in a container that you can use to connect to and inspect other containers volumes, or to get quick access to a test container.

FROM ubuntu:16.04
RUN apt-get update && apt-get install -y openssh-server
RUN mkdir /var/run/sshd
RUN echo 'root:screencast' | chpasswd
RUN sed -i 's/PermitRootLogin prohibit-password/PermitRootLogin
yes/' /etc/ssh/sshd_config
# SSH login fix. Otherwise user is kicked off after login
RUN sed 's@session\s*required\s*pam_loginuid.so@session optional
pam_loginuid.so@g' -i /etc/pam.d/sshd
ENV NOTVISIBLE "in users profile"
RUN echo "export VISIBLE=now" >> /etc/profile
EXPOSE 22
CMD ["/usr/sbin/sshd", "-D"]

Docker Versions

There are three versions of Docker available, each with its own unique use:

  • Docker CE is the simple, classic Docker Engine.
  • Docker EE is Docker CE with certification on some systems and support by Docker Inc.
  • Docker CS (Commercially Supported) is kind of the old bundle version of Docker EE for versions <= 1.13.

We will be installing Docker CE.

 

Docker logo

Step 1 — Checking Prerequisites

To begin, start with the following server environment: 

  1. 64-bit Ubuntu 16.04 server
  2. Logged in as the root user
Important:
Docker on Ubuntu requires a 64-bit architecture for installation and, the Linux Kernel version must be 3.10 or above.

Before installing Docker, we need to set up the repository which contains the latest version of the software (Docker is unavailable in the standard Ubuntu 16.04 repository). Adding the repository allows us to easily update the software later as well.

Step 2 — Installing Docker

The next step is to remove any default Docker packages from the existing system before installing Docker on a Linux VPS. Execute the following commands to start this process:

root@test:~# apt-get remove docker docker-engine docker.io lxc-docker
Reading package lists... Done
Building dependency tree
Reading state information... Done
Package 'docker-engine' is not installed, so not removed
Package 'docker' is not installed, so not removed
Package 'docker.io' is not installed, so not removed
E: Unable to locate package lxc-docker

Note:
In certain instances, a specific variant of the linux kernel is slimmed down by removing less common modules (or drivers). If this is the case, the “linux-image-extra” package contains all of the “extra” kernel modules which were left out. Use this command to re-add them: root@test:~# sudo apt-get install linux-image-extra-$(uname -r) linux-image-extra-virtual

Step 3 — Add required packages

Now, we need to install some required packages on your system. Run the commands below to accomplish this:

root@test:~# apt-get install curl apt-transport-https ca-certificates software-properties-common

Note:
If you get the error: “E: Unable to locate package curl”, Use the commands “curl -V” to see if curl is already installed; if so, move on to step 4.

Step 4 — Verify, Add and Update Repositories

Add the Docker GPG key to your system:

root@test:~# curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
OK

Next, update the APT sources to add the source:

root@test:~# add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu xenial stable" | tee /etc/apt/sources.list.d/docker.list

Run the update again so the Docker packages are recognized:

root@test:~# apt-get update
Get:1 http://security.ubuntu.com/ubuntu xenial-security InRelease [107 kB]
Hit:2 http://us.archive.ubuntu.com/ubuntu xenial InRelease                              
Get:3 http://us.archive.ubuntu.com/ubuntu xenial-updates InRelease [109 kB]             
Get:4 http://us.archive.ubuntu.com/ubuntu xenial-backports InRelease [107 kB]                 
Fetched 323 kB in 0s (827 kB/s)                             
Reading package lists... Done
E: The method driver /usr/lib/apt/methods/https could not be found.
N: Is the package apt-transport-https installed?
E: Failed to fetch https://download.docker.com/linux/ubuntu/dists/xenial/InRelease  
E: Some index files failed to download. They have been ignored, or old ones used instead.

Note:
If you get the error seen above: “N: Is the package apt-transport-https installed?”, Use the following command to correct this. root@test:~# sudo apt-get install apt-transport-https

Let’s rerun the update:

root@test:~# apt-get update
Hit:1 http://us.archive.ubuntu.com/ubuntu xenial InRelease
Get:2 http://security.ubuntu.com/ubuntu xenial-security InRelease [107 kB]
Get:3 http://us.archive.ubuntu.com/ubuntu xenial-updates InRelease [109 kB]        
Get:4 http://us.archive.ubuntu.com/ubuntu xenial-backports InRelease [107 kB]                 
Hit:5 https://download.docker.com/linux/ubuntu xenial InRelease
Fetched 323 kB in 0s (656 kB/s)
Reading package lists... Done

Success! Now, verify we are installing Docker from the correct repo instead of the default Ubuntu 16.04 repo:

root@test:~# apt-cache policy docker-ce
docker-ce:
 Installed: (none)
 Candidate: 18.06.0~ce~3-0~ubuntu
 Version table:
    18.06.0~ce~3-0~ubuntu 500
       500 https://download.docker.com/linux/ubuntu xenial/stable amd64 Packages

Step 5 — Install Docker

Finally, let’s start the Docker install:

root@test:~# apt-get install -y docker-ce
Reading package lists... Done
Building dependency tree       
Reading state information... Done
The following additional packages will be installed:
 aufs-tools cgroupfs-mount libltdl7 pigz
Suggested packages:
 mountall
The following NEW packages will be installed:
 aufs-tools cgroupfs-mount docker-ce libltdl7 pigz
0 upgraded, 5 newly installed, 0 to remove and 0 not upgraded.
Need to get 40.3 MB of archives.
After this operation, 198 MB of additional disk space will be used.
Get:1 http://us.archive.ubuntu.com/ubuntu xenial/universe amd64 pigz amd64 2.3.1-2 [61.1 kB]
Get:2 http://us.archive.ubuntu.com/ubuntu xenial/universe amd64 aufs-tools amd64 1:3.2+20130722-1.1ubuntu1 [92.9 kB]
Get:3 http://us.archive.ubuntu.com/ubuntu xenial/universe amd64 cgroupfs-mount all 1.2 [4,970 B]
Get:4 http://us.archive.ubuntu.com/ubuntu xenial/main amd64 libltdl7 amd64 2.4.6-0.1 [38.3 kB]
Get:5 https://download.docker.com/linux/ubuntu xenial/stable amd64 docker-ce amd64 18.06.0~ce~3-0~ubuntu [40.1 MB]
Fetched 40.3 MB in 1s (38.4 MB/s)    
...
...

Docker should now be installed, the daemon started, and the process enabled to start on boot. Let’s check to see if it’s running:

root@test:~# systemctl status docker
* docker.service - Docker Application Container Engine
  Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor preset: enabled)
  Active: active (running) since Wed 2018-08-08 13:51:22 EDT; 2min 13s ago
    Docs: https://docs.docker.com
Main PID: 6519 (dockerd)
  CGroup: /system.slice/docker.service
          |-6519 /usr/bin/dockerd -H fd://
          `-6529 docker-containerd --config /var/run/docker/containerd/containerd.toml

Aug 08 13:51:22 test.docker.com dockerd[6519]: time="2018-08-08T13:51:22.192600502-04:00" level=info msg="ClientConn switching balancer to \"pick_first\"" module=grpc
Aug 08 13:51:22 test.docker.com dockerd[6519]: time="2018-08-08T13:51:22.192630873-04:00" level=info msg="pickfirstBalancer: HandleSubConnStateChange: 0xc42020f6a0, CONNECTING" module=grpc
Aug 08 13:51:22 test.docker.com dockerd[6519]: time="2018-08-08T13:51:22.192854891-04:00" level=info msg="pickfirstBalancer: HandleSubConnStateChange: 0xc42020f6a0, READY" module=grpc
Aug 08 13:51:22 test.docker.com dockerd[6519]: time="2018-08-08T13:51:22.192867421-04:00" level=info msg="Loading containers: start."
Aug 08 13:51:22 test.docker.com dockerd[6519]: time="2018-08-08T13:51:22.340349000-04:00" level=info msg="Default bridge (docker0) is assigned with an IP address 172.17.0.0/16. Daemon option --bip can be used to set a preferred IP address"
Aug 08 13:51:22 test.docker.com dockerd[6519]: time="2018-08-08T13:51:22.397715134-04:00" level=info msg="Loading containers: done."
Aug 08 13:51:22 test.docker.com dockerd[6519]: time="2018-08-08T13:51:22.424005987-04:00" level=info msg="Docker daemon" commit=0ffa825 graphdriver(s)=overlay2 version=18.06.0-ce
Aug 08 13:51:22 test.docker.com dockerd[6519]: time="2018-08-08T13:51:22.424168214-04:00" level=info msg="Daemon has completed initialization"
Aug 08 13:51:22 test.docker.com dockerd[6519]: time="2018-08-08T13:51:22.448805942-04:00" level=info msg="API listen on /var/run/docker.sock"
Aug 08 13:51:22 test.docker.com systemd[1]: Started Docker Application Container Engine.
~
~
~
(press q to quit)

Excellent! Good to go!

If Docker is not started automatically after the installation, run the following commands:

root@test:~# systemctl start docker.service
root@test:~# systemctl enable docker.service

Step 6 — Test Docker

Let’s check the new Docker build by downloading the hello-world test image.
To start testing, issue the following command:

 


root@test:~# docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
9db2ca6ccae0: Pull complete
Digest: sha256:4b8ff392a12ed9ea17784bd3c9a8b1fa3299cac44aca35a85c90c5e3c7afacdc
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
   (amd64)
3. The Docker daemon created a new container from that image which runs the
   executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
   to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/engine/userguide/

Step 7 — The ‘Docker’ Command

With Docker installed and working, now is the time to become familiar with the command line utility. The ‘Docker’ command consists of using Docker with a chain of options followed by arguments. The syntax takes this form:

root@test:~# docker
Usage: docker [OPTIONS] COMMAND
A self-sufficient runtime for containers
Run 'docker COMMAND --help' for more information on a command.


To view all of the available Options and Management Commands, simply type:

docker

To view the switches available for a specific command, type:

docker docker-subcommand --help

Lastly, To view system-wide information about Docker, use:

docker info

Docker is a dynamic, robust and responsive tool that makes it very simple to run applications within a containerized environment. It is portable, less resource-intensive, and more reliant on the host operating system which allows for multiple uses. Overall, Docker is a ‘must have’ system and should be included in your toolkit for automation, deployment, and scaling of your applications!

Our Support Teams are filled with talented admins with an intimate knowledge of multiple web hosting technologies, especially those discussed in this article. If you are uncomfortable walking through the steps outlined here, we are a phone call, chat or ticket away from assisting you with this process. If you’re running one of our fully Managed Cloud VPS Servers, we can provide more information on directly implementing the software described in this article.

 

How To Install Oracle Java 8 in Ubuntu 16.04